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Abstract Isotropy in the elastic properties of powders

undergoing uniaxial compaction in a cylindrical die was

evaluated from in situ measurements of elastic wave

speed. Shear and bulk longitudinal wave speeds were

measured in both the axial (pressing) and radial

directions. For the five different metal powders stud-

ied, wave speeds were generally higher in the axial

direction. As such, the powder body was best described

as a transversely isotropic material; complete isotropy

was approached only when the powder was close to the

loose packed state, or completely solid. Transversely

isotropic elastic moduli analogous to the common

isotropic ‘engineering’ moduli (Young’s modulus,

Poisson’s ratio, etc.) were calculated by combining

elastic wave speed measurements with the Saint-

Venant approximation. Pseudo-isotropic elastic moduli

(calculated from axial wave speed measurements and

assuming elastic isotropy) were found to be only

qualitatively similar to transversely isotropic elastic

moduli for the axial plane.

Introduction

Results on the evolving elastic moduli of powders

during uniaxial compaction have been discussed in a

companion paper (Hentschel and Page submitted).

These elastic moduli were calculated from in situ

measurements of bulk longitudinal and shear elastic

wave speeds for propagation in the axial (pressing)

direction. Elastic properties of the powder compact

were characterised by the isotropic moduli Young’s

modulus (E), and Poisson’s ratio (m), calculated from

the elastic wave speeds according to Eqs. 1 and 2.

E ¼ qc2
S

3c2
L � 4c2

S

c2
L � c2

S

ð1Þ

m ¼ c2
L � 2c2

S

2ðc2
L � c2

SÞ
ð2Þ

where q, density; and cL, cS are bulk longitudinal, and

shear elastic wave speeds respectively.

These equations assume the propagating medium is

homogeneous, linearly elastic, and isotropic. The

validity of these assumptions for a powder undergoing

uniaxial compaction is considered in greater detail in

the following.

Homogeneity

Homogeneity of a powder compact requires uniform

distribution of constituent solid phase materials. Even

for the case of powders comprised of only a single solid

phase material, inhomogeneities arise simply as density

variations throughout the compact. Minimising such

density variations is often critical, as strength, and rate

of sintering depend strongly on density [1]. Thus, low

density regions of powder compacts may be more

prone to failure, or sinter at a slower rate distorting

component shape [2].

As the density of a powder body is intimately linked

to its stress history, non-uniform density implies a
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corresponding non-uniformity in stress. One such

source of non-uniform stress is friction between the

powder and containment surfaces. Die wall friction

opposes the applied load, effectively transferring part

of the compaction force to the die walls and producing

stress and density gradients within the compact. Spatial

variation of density is typically quite complex [1–6],

depending on the coefficient of friction for the powder-

die wall interface, stress bifurcation abilities of the

powder (coefficient of lateral pressure), and compact

aspect ratio (quotient of height by diameter). A

reduction in any of these parameters generally serves

to decrease density variations. For a given powder

(fixed coefficient of lateral pressure) effects of die wall

friction can be minimised by lubrication, or reducing

the compact aspect ratio. Compaction geometry is also

important. For example, uniaxial compaction in an

unsupported (‘floating’) die ensures the force trans-

mitted to the lower punch is equal to the applied

compaction force, which effectively reduces the com-

pact aspect ratio by half [5, 6].

Superimposed upon stress gradients due to die wall

friction are heterogeneous stresses which arise from

non-uniformities in particle packing; a result of

variations in particle size and shape. When an external

force is applied to a non-uniform packing, the majority

of the applied load is supported by a relatively small

number of the possible paths through the powder,

forming so-called ‘force chains’ (e.g. [7]). As a result

some powder particles (those within force chains)

experience relatively high stresses, while others remain

virtually stress-free. In a powder undergoing significant

compaction, this contribution to stress heterogeneity is

unlikely to dominate gradients induced by die wall

friction, as appreciable densification requires perma-

nent deformation of the particles (fracture, plastic flow,

etc.). Such deformation will occur preferentially in

regions of highest stress, serving to reduce local forces.

Thus, force chains would repeatedly break and reform

during compaction, minimising their ability to contrib-

ute significantly to density variations throughout the

compact.

Few studies describing effects of density variations

on elastic properties have been reported. Rice and

Donahue [8] considered the effects of inhomogeneous

density on the elastic properties of porous materials by

evaluating Young’s modulus according to a selection of

models applicable to composite materials. Within these

models, the bulk was considered as a composite of

two different ‘materials’ with different densities or

porosity type. It was concluded that, unless the

inhomogeneity is particularly severe, the influence on

elastic properties is minimal.

This is supported by experimental measurements of

elastic wave speeds in powders during compaction.

Dawson et al. [9] measured bulk longitudinal wave

speeds in iron powder undergoing uniaxial compac-

tion. No appreciable difference was found in bulk

longitudinal wave speed (hence elastic properties) for

compacts with final aspect ratios between approxi-

mately 0.16–0.22. Likewise, in the study which forms

the basis of this work [10], shear and bulk longitudinal

wave speeds were measured as a function of porosity

in both stainless steel and copper powders. Again

these were each consistent for compacts with mark-

edly different final aspect ratios (ranging from 0.12

to 0.46). Density distributions were not measured,

however the good agreement between wave speeds

indicates either density gradients were negligible, or

wave speeds (hence elastic properties) are relatively

insensitive to the prevailing inhomogeneities in

density. Neither scenario precludes the use of Eqs. 1

and 2 in the present case.

Linear elastic response

The second assumption to be examined is whether the

compact may be regarded as a linearly elastic medium.

Equations 1 and 2 are essentially a combination of

Hooke’s law and Newton’s second law of motion (e.g.

[11]). Hooke’s law requires deformation to be (i)

elastic (deformation is completely recoverable), and

(ii) linear (elastic strain components are directly

proportional to corresponding stress components).

Both assumptions must be satisfied for Eqs. 1 and 2

to be valid.

Powder compacts at densities close to that of the

solid phase would satisfy both criteria; provided the

solid phase is itself a linear elastic material. However,

it is not obvious whether this still holds at the lowest

densities when the bulk response is dominated by inter-

particle contact mechanics. Analysis of the stiffness

between two contacting bodies generally predicts non-

linear load-deflection behaviour (e.g. [12–14]). Further,

it has also been argued [15] that internal yield (failure

of some inter-particle contacts) can be expected for

finite changes in applied stress. Either will likely

invalidate the assumption of bulk linear elastic

response for elastic moduli measured from large

changes in applied stress (as traditional quasi-static

methods require).

However a strong positive of measuring elastic

properties by wave propagation techniques is that

Eqs. 1 and 2 are derived assuming infinitesimally small

stress increments. Thus, the assumption of a linear

123

1270 J Mater Sci (2007) 42:1269–1278



elastic response need only hold over a relatively small

range of stresses (wave amplitude), and the strength of

inter-particle contacts need only be very small. In the

present work, with elastic wave speeds calculated from

the measured propagation time of ultrasonic pulses,

this condition should be well satisfied. For instance,

Matikas et al. [16] quote material displacements

induced by the passage of the ultrasound to be of the

order of 10–10 m.

Experiments have been conducted [10] to test

whether ultrasonic pulse propagation produced a

measurable effect on powder density (i.e. yield) under

conditions relevant to this study. This was achieved by

monitoring the density of a powder sample subject to

the minimum applied pressure at which wave speeds

were measured in this study (0.06 MPa). Powder

thickness (density) was measured, initially (for

25 min) without ultrasound propagating through the

powder, then for a further time (75 min, with a pulse

repetition frequency of 5 kHz) with ultrasonic pulse

propagation. No difference between the two situations

was apparent, indicating the passage ultrasound did not

induce discernible density changes (internal yield) in

the powder body. Hence, it is felt that the assumption

of linear elasticity inherent in Eqs. 1 and 2 is valid for

the experimental configuration used here (further

details are provided below, and elsewhere [10]).

Elastic isotropy

Often a uniaxially compacted powder is assumed to be

isotropic. In many cases, this assumption is implicitly

invoked by using isotropic parameters to describe the

compacted powder (e.g. [17–23]). However, uniaxial

powder compaction in a rigid die is an inherently

anisotropic process (e.g. [1, 22, 24]). Viewed as a

continuum, axial deformation will usually far exceed

deformation in the radial direction, which is con-

strained by the die walls. On this basis it is likely that

the pore structure, and hence those physical properties

dependent on the nature of porosity, will display

directional dependence [24–26]. This calls into ques-

tion the assumption of isotropy mechanical properties,

including elastic properties.

Shima and Saleh [27] investigated anisotropy in

powders biaxially compacted at various relative strain

rates. Their experimental data clearly demonstrates

anisotropy may be induced in a powder which is

subjected to compacting stresses that are not equal in

all directions, as is the case for uniaxial compaction in a

rigid cylindrical die. Compaction-induced anisotropy is

also suggested to cause corresponding anisotropies in

the properties of sintered powder compacts, most

evident as differential shrinkage (e.g. [27–29]).

Several authors have reported results relevant to the

specific case of elastic isotropy in compacted powders

and porous materials [30–36]. This has often been

performed by evaluating whether longitudinal wave

speed through the sample has directional dependence.

Alternatively, isotropy about a particular direction

(axis) can also be detected by rotating the polarisation

of the shear wave displacement vector [36]. The shear

wave speed will change depending on the stiffness of

the material plane in which the shear wave displace-

ment vector oscillates. A variety of results have been

obtained on the nature of elastic isotropy: Brettell [35]

found longitudinal wave speed was up to 11% higher in

the pressing direction than in the directions perpen-

dicular, while others report the converse [33, 34].

Martin et al. [30] found virtually no difference with

propagation direction, while Parthasarathi and Prucher

[31] produced samples that display both types of

behaviour.

Inconsistencies in the nature of compaction-induced

elastic anisotropy may possibly arise from differences

in compaction techniques, or the particular mix of

compaction and sintering to which some samples were

subjected. Similar inconsistencies have been explained

[29] for differences in the observed nature of shrinkage

anisotropy of sintered powder compacts. It is also

possible that anisotropy of bulk elastic properties may

be influenced by anisotropic characteristics of the

starting powders, particularly non-isometric particle

shape, or preferred orientation of a crystalline direc-

tion in solid phase material which itself has strong

elastic anisotropy. For instance, Krzesiñska et al. [32]

have described a study of a graphite powder during

compaction, for which bulk elastic anisotropy was

partially attributable to compaction-induced preferen-

tial alignment of the graphite crystalline axes.

Importantly though, the demonstrated difference in

longitudinal elastic wave speeds with direction, indi-

cates that elastic isotropy may not be realised for

compacted powders. Should this be the case, Eqs. 1

and 2 would no longer be applicable, and additional

elastic moduli are required to describe the elastic

behaviour of compacted powders. For sample pro-

duction methods which are symmetric about an axis

(e.g. uniaxial compaction in a cylindrical die), it is

most likely the compact will exhibit transverse isot-

ropy [31, 34, 36], with elastic properties that are

identical in radial directions, but distinct from those in

the axial direction. This is considered in detail in the

current work.
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Transverse isotropy

Throughout the following, it is assumed that the

transversely isotropic material has cylindrical geome-

try, with the unique axis collinear to the cylinder axis

(3) of a Cartesian coordinate system (1, 2, 3). As

material properties are identical for all directions

within the radial (1, 2) plane, it is also assumed that

waves propagating in the radial direction do so along

the 1-axis (to simplify notation). Of course, neither

assumption is necessary; however, as this is the

prevailing geometry for uniaxial powder compaction

in a cylindrical die, it simplifies description and allows

ready interpretation in terms of the compact geometry.

For a medium in which body forces can be

neglected, the most general form of Hooke’s law is

given by Eq. 3.

ri ¼ Cijej ð3Þ

where r and e are stress and strain components

respectively, C is the stiffness matrix. i; j ¼ 1; . . . ; 6

using the contracted notation.

For an isotropic material, the stiffness matrix, Cij,

has 12 non-zero components between which the

following relations hold:

C11 ¼C22 ¼C33

C44 ¼C55 ¼C66

with C12 ¼C13 ¼C23 ¼C21 ¼C31 ¼C32 ¼ ðC11� 2C44Þ
ð3aÞ

These can be expressed in terms of the more

common ‘engineering’ elastic moduli, by defining the

Lamé constants, k and l as: k = C12 and l = C44.

For a transversely isotropic material, the stiffness

matrix also has 12 non-zero components. However, due

to reduced symmetry relative to the isotropic case, the

number of independent components (elastic moduli)

increases to five. The following relations hold between

these components (e.g. [38]):

C11 ¼ C22

C12 ¼ C21

C13 ¼ C23 ¼ C32 ¼ C31

C33

C44 ¼ C55

with C66 ¼
1

2
ðC11 � C12Þ

ð3bÞ

As with the isotropic case, elastic wave speed

measurements can be used to determine the elastic

moduli of a transversely isotropic material, with the

addition that wave propagation direction must also be

considered. Relations between elastic moduli of a

transversely isotropic material and the shear and

longitudinal elastic wave speeds in two principal

directions (3, 1) are given in Table 1 (e.g. [38]).

Hence, measurement of these four unique wave

speeds allows four of the five elastic moduli (C11, C12,

C33, C44) to be determined. For the remaining elastic

modulus C13, wave speeds must be measured in a third

(non-orthogonal) direction. Such measurements pose

considerable technical challenges, and hence, were not

performed in this work.

To distinguish between the two cases, the following

equalities may be evaluated. These will hold for

complete isotropy, but not for transverse isotropy

(Eq. 3a, b) and Table 1).

cL;r ¼ cL;a or C11 ¼ C33

cS;rr ¼ cS;ra ¼ cS;a or C44 ¼
1

2
ðC11 � C12Þ

A further equality that will hold for either transverse

or complete isotropy is:

cS;rr ¼ cS;a or C44;axial ¼ C44;radial

Table 1 Relations between wave speed and elastic moduli for a transversely isotropic medium

Propagation mode Propagation direction Wave displacement vector Wave speed

Longitudinal Axial (3) Axial (3) cL;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C33=q
p

Shear Axial (3) Any direction in radial (1, 2) plane cS;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C44=q
p

Longitudinal Radial (1) Radial (1) cL;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C11=q
p

Shear Radial (1) Radial (2) cS;rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C44=q
p

Shear Radial (1) Axial (3) cS;ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC11 � C12Þ=2q
p

q is bulk density. Wave speeds are labelled according to propagation mode (first subscript), propagation direction (second subscript),
and polarisation direction (third subscript) where appropriate. Hence, cS,ra denotes a shear wave propagating in the radial direction,
polarised in the axial direction. Polarisation need not be specified for shear waves propagating in the axial direction, as all radial
directions are equivalent
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Thus, three ratios may be defined to quantify the

anisotropy of a transversely isotropic material:

A1 ¼
C44;axial

C44;radial
¼ cS;a

cS;rr

� �2

ð4Þ

A2 ¼
C33

C11
¼ cL;a

cL;r

� �2

ð5Þ

A3 ¼
2C44

C11 � C12
¼ cS;a

cS;ra

� �2

ð6Þ

A1 is useful for evaluating whether a medium is

either transversely or completely isotropic. A2 and A3

distinguish between the two, quantifying compressive

anisotropy and shear anisotropy respectively.

Experimental methods

Five different powders (Table 2) were each uniaxially

compacted within a rigid cylindrical die using applied

pressures up to 560 MPa. Shear and longitudinal

ultrasonic transducers were used to measure elastic

wave speeds in situ for propagation in the axial

(pressing) and radial directions (see also [10]). Com-

parison between results for the five powders allows the

effects of solid phase material, and particle shape on

elastic properties to be evaluated, analogous to

pseudo-isotropic elastic moduli calculated from axial

wave speed measurements considered elsewhere

[Hentschel and Page submitted, 10].

Results and discussion

Axial and radial wave speeds in the spheroidal copper

powder as a function of compact porosity are presented

in Fig. 1. As results for the remaining powders were

found to be qualitatively similar, some general obser-

vations are made on the basis of this figure.

• Radial shear wave speeds with polarisation in the

radial direction agree closely with axial shear wave

speeds over the common porosity range

ðcS;rr � cS;aÞ:
• Axial longitudinal wave speed exceeds radial lon-

gitudinal wave speed ðcL;a[cL;rÞ:
• Axial shear wave speed slightly exceeds radial shear

wave speed with polarisation in the axial direction

ðcS;a � cS;rr[cS;raÞ:.

Table 2 Powder details

Powder Particle shapea Comparative purpose in testing schedule Shape descriptorsb

AR � FF

A. Dendritic copper Dendritic Particle shape (B, C) 0.605 0.796
B. Irregular copperc Irregular Particle shape (A, C) 0.717 0.822
C. Spheroidal copper Spheroidal Solid phase material properties (D, E) 0.934 0.994
D. Stainless steel Spheroidal Solid phase material properties (C, E) 0.843 0.957
E. Aluminium Spheroidal Solid phase material properties (C, D) 0.773 0.931

Micrographs illustrating particle shape are presented elsewhere [10, Hentschel and Page submitted]
a Terminology of British Standard 5600
b Defined in Eqs. 1 and 2 in Hentschel and Page (submitted)
c Denoted Irregular copper (MM) in Hentschel and Page (submitted)
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Fig. 1 Porosity dependence of elastic wave speeds measured in
situ during uniaxial compaction of spheroidal copper powder.
(s) Longitudinal wave speed for propagation in the axial
direction. (D) Longitudinal wave speed for propagation in the
radial direction. (–) Shear wave speed for propagation in the
axial direction with polarisation in the radial plane. (h) Shear
wave speed for propagation in the radial direction with
polarisation in the radial plane. (·) Shear wave speed for
propagation in the radial direction with polarisation in the axial
plane. The filled diamonds are shear and bulk longitudinal elastic
wave speeds in (isotropic) solid copper
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• As porosity decreases, both radial wave speeds

approach the corresponding axial wave speeds.

• At the highest porosities, the axial and radial

longitudinal wave speeds appear to be converging.

These points embody four important results.

1. The difference between radial and axial wave

speeds demonstrates powders exhibit elastic

anisotropy during uniaxial compaction.

2. Agreement between cS, a and cS, rr is consistent

with a transversely isotropic medium.

3. Longitudinal wave speeds differ most. This sug-

gests much of the elastic anisotropy is attributable

to differences in compressive stiffness between

axial and radial directions: shear stiffness in the

radial direction is only slightly lower than its axial

counterpart.

4. Elastic anisotropy is most pronounced mid-way

through compaction. Axial and radial longitudinal

wave speeds appear to be converging at either end

of the measured porosity range.

This final point suggests isotropy is approached

when the compact is either close to the solid phase

density, or only lightly consolidated (note p = 0.37

corresponds to the ‘tapped’ density state of the

spheroidal copper powder in Fig. 1). Given the parti-

cles themselves are approximately isometric, it is

expected the porosity within the undeformed array of

particles will also be isotropic, and hence any porosity

dependent properties likewise. This is unable to be

rigorously tested with the present apparatus though, as

the ultrasonic pulses are strongly attenuated at high

porosities. At the other extreme, as porosity is reduced

towards zero, re-convergence towards isotropy is likely

due to the pores becoming increasingly spherical (to

reduce local stresses) as solid phase density is

approached.

These observations on the progression of anisotropy

are quantified by use of the ratios defined in Eqs. 4–6.

Calculated values of these ratios as a function of

compact porosity are presented in Fig. 2.

Figure 2a demonstrates generally good agreement

between C44, radial and C44, axial (C44 calculated from cS,

rr, and cS, a respectively). Excepting low porosity data

for the dendritic copper powder, the difference is less

than 5%. For the dendritic powder, the maximum

difference is 12%. It is felt this discrepancy was most

likely due to a slight mis-alignment of the shear

polarisation direction with the radial direction, so the

plane in which shear oscillation occurred for the radial

measurement did not match that of the axial shear

wave speed measurement.

By itself, agreement between C44, axial and C44, radial

demonstrates that the powder is either transversely or

completely isotropic during compaction. To distinguish
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Fig. 2 Elastic anisotropy of powders during compaction. (a) A1. (b)
A2. (c) A3. In all cases, deviations from unity indicate greater
anisotropy, see Eqs. 4–6. (h) Aluminium; (s) stainless steel; (D)
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In (c), the open symbols represent A3 calculated using C44, axial, while
for the filled symbols C44, radial was used. (+) represents A3 for the
dendritic copper powder calculated using C44, radial
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between the two possibilities, other measures of

anisotropy, such as those defined in Eqs. 5 and 6, are

required (Fig. 2b, c). As the wave speed data alluded,

these ratios show compressive anisotropy (A2) is more

pronounced than shear anisotropy (A3). Again, both

indicate decreasing anisotropy as porosity approaches

zero. Given pores are expected to become increasingly

spheroidal as solid phase density is approached, this

suggests pore anisotropy dominates anisotropy induced

by preferred orientation of the solid phase crystal

structure during compaction. The possibility this result

is due to counter-balancing effects of pore and

crystalline anisotropy is considered unlikely, as the

level of elastic anisotropy for the spheroidal copper

and aluminium powders is similar despite elastic

anisotropy of the copper crystal structure being

approximately 2.5 times that of aluminium [38].

With elastic anisotropy of the powders during

uniaxial compaction firmly established, the isotropic

elastic moduli as calculated by Eqs. 1 and 2 are

unsuitable for characterising the elastic properties of

powder undergoing uniaxial compaction. As discussed

previous, description of the compact as a transversely

isotropic medium appears most appropriate given the

prevailing compaction geometry. Experimental data

considered just prior supports this.

Five elastic moduli are required to describe the

elastic response of a transversely isotropic medium. The

five independent components of the stiffness matrix

(C11, C12, C33, C13, C44) can be re-cast into a form closer

to the ‘engineering moduli’ (E, m, l, k, etc.), by consid-

ering the inverse of the generalised Hooke’s law (Eq. 3).

ei ¼ Sijrj ð7Þ

with Sij the elastic compliances (the inverse of Cij).

Expanding gives (for transverse isotropy):

e11
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e23

e31

e12
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0
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2
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6
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ð7aÞ

Thus, five elastic moduli can be defined for the

transversely isotropic medium, which are closely anal-

ogous to the elastic moduli for an isotropic medium

[14]. Their relation with the moduli Cij are as given by

Eq. 8.

Er ¼
1

S11
¼

C11 � C12ð Þ C11C33 þ C12C33 � 2C2
13

� �

C11C33 � C2
13

Ea ¼
1

S33
¼

C11C33 þ C12C33 � 2C2
13

� �

C11 þ C12

lr ¼
1

S66
¼ 1

2
C11 � C12ð Þ

la ¼
1

S44
¼ C44

mr ¼
�S12

S11
¼ C12C33 � C2

13

C11C33 � C2
13

¼ Er

2lr

� 1

ma ¼
�S13

S33
¼ C13

C11 þ C12

ð8Þ

Er is Young’s modulus of the radial plane, and

likewise Ea is Young’s modulus for the axial plane. ma

represents strain in the radial direction resulting from

stress applied in the axial direction, while mr determines

strain in a radial direction due to stress applied in a

different radial direction, perpendicular to the strain

direction. la is the shear modulus of planes parallel to

the axial direction; lr the shear modulus of the radial

plane. Importantly though, in the absence of data on

C13, neither Ea, Er, ma, or mr can be calculated.

However, these quantities can be estimated by use of

the Saint-Venant approximation (e.g. [39, 40]).

1

la

¼ 1

Er
þ 2ma þ 1

Ea
ð9Þ

This is an empirical relation. However, in a survey of

experimental data on different types of anisotropic

rocks, Worotnicki [39] has shown Eq. 9 to be widely,

although not universally applicable. Support for apply-

ing this relation in the present case, can also be drawn

from the behaviour of models used to predict elastic

properties of porous materials. Model equations for

the elastic properties of anisotropic bodies containing

non-interacting cavities suggested by Shafiro and Ka-

chanov [41], can be reduced to Eq. 9. Likewise, within

the scope of a model for the elastic properties of

porous materials suggested by Zhao et al. [42], Eq. 9 is

satisfied to within 15% (see [10, Hentschel and Page

submitted] for a discussion of this model). Further, a

model for the elastic moduli of a hexagonal close-

packed array of identical spheres by Duffy [43] satisfies
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Eq. 9 to within a maximum of 6%. While these results

certainly provide encouragement for the validity of the

Saint-Venant approximation, it must be acknowledged

that rigorous experimental justification is still lacking.

Adopting the Saint-Venant approximation, an esti-

mate of C13 can be obtained combining Eqs. 8 and 9.

After some minor simplifications, Eq. 10 results.

C44 ¼
C11 � C12ð Þ C11C33 þ C12C33 � 2C2

13

� �

C11C33 � C2
13

� �

þ C11 � C12ð Þ 2C13 þ C11 þ C12ð Þ
ð10Þ

As explicit solution to obtain C13 as a function of the

four remaining components of the stiffness matrix is

mathematically complex, a numerical solution was

implemented. The resulting estimates of C13, along

with measured values of C11, C12, C33, and C44 allows

calculation of elastic moduli for the axial and radial

planes (i.e. Ea, Er, ma, mr, la, lr) as defined in Eq. 8.

These moduli are presented in Fig. 3 as a function of

porosity during compaction. In order to facilitate

comparison between different material types, shear

and Young’s modulus values for each different material
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Fig. 3 Comparison between
estimates of elastic moduli for
radial and axial planes. (a, b)
Young’s modulus. Values
have been normalised by the
appropriate isotropic solid
phase Young’s modulus for
each material: 67.6, 195,
115 GPa for aluminium,
stainless steel, and copper
respectively. (c, d) Poisson’s
ratio. (e, f) shear modulus
normalised by solid phase
values: 25, 75.6, 42.6 GPa for
aluminium, stainless steel,
and copper respectively. (h)
Aluminium; (s) stainless
steel; (D) spheroidal copper;
(e) irregular copper; (–)
dendritic copper, values for
axial plane (· ) dendritic
copper values for radial plane.
For other powders, open
symbols correspond to the
radial plane, and filled
symbols to the axial plane.
Note that only five of the six
moduli shown are
independent
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are normalised by their respective solid phase values for

an isotropic material. It is felt that this normalisation

procedure is justified by the observed approach towards

isotropy exhibited by each compact. However, it is

noted that this may not be appropriate method if

compaction were to generate significant preferred

orientation of a crystal structure with high elastic

anisotropy. For example, measurements on compacted

graphite powder described by Krzesiñska et al. [32],

would be most appropriately normalised by the corre-

sponding crystalline values of elastic moduli, rather

than the isotropic values (which are an average over all

crystalline directions). Results for the five different

powders are separated in two groups, illustrating effects

of solid phase elastic properties (spheroidal powders in

Fig. 3a, c, e), and pore character (different shaped

copper powders in Fig. 3b, d, f) respectively.

This figure yields some interesting points. First, each

elastic modulus is higher in the axial plane than for the

radial plane, consistent with the wave speed results

discussed earlier. Second, for a given plane (axial or

radial), the influence of particle material and particle

shape on Young’s, modulus and Poisson’s ratio is similar

to results discussed in a companion paper (Hentschel

and Page submitted). For example, considering Young’s

modulus of the radial plane, data for the three spheroi-

dal metal powders closely coincides when normalised by

respective solid phase values. Thus, the variation of

Young’s modulus with porosity in the radial plane is also

accounted for by solid phase elastic properties. With

regard to the effects of particle shape, each of the moduli

shows similar qualitative behaviour to the moduli

calculated from axial wave speeds and assuming elastic

isotropy (pseudo-isotropic moduli) in Hentschel and

Page (submitted). Again, a more rugged particle shape

produces compliant compacts. The physical basis of this

response can be interpreted in the same manner as

described in Hentschel and Page (submitted).

Finally, and perhaps most importantly, the results of

Fig. 3 show the qualitative dependence of the axial

plane moduli is similar to the evolution with porosity

presented in Hentschel and Page (submitted). This

result provides support for data presented in Hentschel

and Page (submitted), indicating that despite the

presence of anisotropy, axial wave speeds provide a

useful measure of Young’s modulus and Poisson’s ratio

for the axial plane.

Conclusions

Elastic wave speeds have been measured in powders

undergoing uniaxial compaction. Comparison between

in situ wave speed measurements in the axial (pressing)

and radial directions shows the powder compact

exhibits significant elastic anisotropy. This was attrib-

uted to corresponding anisotropies in pore character

induced during compaction. Elastic anisotropy was

found to be most pronounced mid-way through com-

paction; at the highest and lowest porosities, wave

speeds appear to be convergent, indicating elastic

isotropy.

In general, the compact was best described as a

transversely isotropic medium, requiring five moduli to

characterise its elastic behaviour. From the wave speed

data measured, four of these moduli were calculated

directly. Utilising the Saint-Venant approximation,

these were then cast into a form analogous to the

isotropic engineering elastic moduli (Young’s modulus,

Poisson’s ratio, shear modulus, etc.). Moduli for the

axial plane were found to be qualitatively similar to

analogous pseudo-isotropic elastic moduli, which were

calculated from axial wave speed data only with the

assumption of elastic isotropy. Solid phase elastic

properties, and particle shape were found to affect

the transversely isotropic elastic moduli in a manner

similar to that found for the pseudo-isotropic moduli

discussed elsewhere (Hentschel and Page submitted).
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